Bibliography
- [1]
- [2]
- M. Bohnert and J. Springer. Classifying rational polygons with small denominator and few interior lattice points (2024), arXiv:2410.17244 [math.CO].
- [3]
- [4]
- J. Springer. The Picard index of a surface with torus action. Collectanea Mathematica (2024).
- [5]
- D. Hättig, B. Hafner, J. Hausen and J. Springer. Del Pezzo surfaces of Picard number one admitting a torus action. Annali di Matematica Pura ed Applicata (2025).
- [6]
- D. Hättig, J. Hausen and J. Springer. Classifying log del Pezzo surfaces with torus action. Revista Matemática Complutense (2025).
- [7]
- D. A. Cox, J. B. Little and H. K. Schenck. Toric varieties. Vol. 124 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2011); p. xxiv+841.
- [8]
- R. J. Koelman. The number of moduli of families of curves on toric surfaces. Ph.D. Thesis, University of Nijmegen (1991).
- [9]
- W. Castryck. Moving out the edges of a lattice polygon. Discrete Comput. Geom. 47, 496–518 (2012).
- [10]
- G. Brown and A. M. Kasprzyk. Small polygons and toric codes. J. Symbolic Comput. 51, 55–62 (2013).
- [11]
- A. M. Kasprzyk, M. Kreuzer and B. Nill. On the combinatorial classification of toric log del Pezzo surfaces. LMS J. Comput. Math. 13, 33–46 (2010).
- [12]
- [13]
- J. Hausen and K. Király. K-surfaces of Picard number one and integral degree* (2024), arXiv:2411.15079 [math.AG].